Chapter 8 Ohm's law describes the relationship of current, voltage, and resistance.

Section 8.1 Electric Potential Energy and Voltage

Reading Checks

- Pages 110–1111. stored energy that has the potential to make
- 2. potential difference

Vocabulary Puzzle Electricity crossword puzzle Page 112

something move or change

Across

- 2. potential energy
- 3. electrolyte
- 7. electrodes
- 9. coulomb
- 10. dry cell
- 13. voltage
- 14. electrochemical cell

Down

- 1. kinetic energy
- 2. potential difference
- 4. terminals
- 5. voltmeter
- 6. wet cell
- 8. volt
- 11 battery
- 12. energy

Cloze Activity

Electric potential energy

Page 113

- 1. energy
- 2. Answers can be in either order: electrochemical cell, battery
- 3. potential energy
- 4. chemical, electrical
- 5. separated
- 6. chemical

14

- 7. electrodes, electrolyte
- 8. negatively, positively
- 9. potential difference

Interpreting Illustrations Electrochemical cells Page 114

- 1. (a) positive terminal
 - (b) plastic insulator
 - (c) electrolyte
 - (d) carbon rod
 - (e) negative terminal
- 2. (a) negative terminal
 - (b) positive terminal
 - (c) lead plate
 - (d) electrolyte

Assessment

Electric potential energy and voltage Page 115

1. C 2. F 3. D 4. A 5. B 6. B 7. A 8. A 9. B 10. A

Section 8.2 Electric Current

Reading Checks

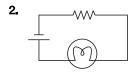
Page 116

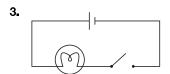
- a complete pathway through which electrons can flow
- 2. ammeter

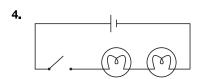
Applying Knowledge

Identifying circuit symbols


Page 118


- 1. C, IV
- 2. B, V
- 3. D, II
- 4. E, I
- 5. A, III
- 6. In any order: conducting wire, battery, switch, bulb


Illustrating Concepts


Drawing circuit diagrams

Page 119

Comprehension

True or false?

Page 120

- 1. True
- 2. False. An electric load transforms electrical energy into other forms of energy.
- 3. True
- 4. True
- 5. False. A switch is a device that can turn the circuit on and off by closing or opening the circuit. or A battery is the source of electric potential energy in a circuit.
- 6. True
- **7.** False. Current electricity is the **continuous flow of charge in a complete circuit.** *or* **Static electricity** is charge that remains stationary on an insulator.
- 8. True
- **9.** False. Electric current is measured in **amperes.** *or* Potential difference (voltage) is measured in volts.
- **10.** True

Assessment

Electric current

Page 121

1. A 2. D 3. B 4. F 5. C 6. D 7. A 8. D 9. A

Section 8.3 Resistance and Ohm's Law Reading Checks

Page 123

- 1. Resistance equals voltage divided by current.
- 2. a component in an electric circuit that has a specific resistance

Comprehension

Voltage, current, and resistance Page 124

- (a) amount of charge passing a point in a conductor every second
 - **(b)** amount of electric potential energy per one coulomb of charge

- (c) opposition to the flow of current through a circuit
- (d) mathematical equation that shows how voltage, current, and resistance are related (resistance equals voltage divided by current)
- (e) a component in a circuit that has a specific resistance, used to control current or voltage

	CURRENT	VOLTAGE	RESISTANCE
Symbol	I	V	R
Unit	amperes (A)	volts (V)	ohms (Ω)
Meter used for measurement	ammeter	voltmeter	ohmmeter
Symbol for Meter	<u>—</u>		
Formula	I = V ÷ R	$V = I \times R$	$R = V \div I$

Applying Knowledge Calculations with Ohm's law

Page 125

2.
$$R = V \div I = 120 \text{ V} \div 10 \text{ A} = 12 \Omega$$

3.
$$V = I \times R = (0.2 \text{ A})(30 \Omega) = 6 \text{ V}$$

4.
$$I = V \div R = 3 \text{ V} \div 24 \Omega = 0.125 \text{ A}$$

5.
$$V = I \times R = (6 \text{ A})(20 \Omega) = 120 \text{ V}$$

Analyzing Information

Relationship between current, voltage, and resistance

Page 126

- 1. (a) As current increases, voltage increases.
 - (b) This suggests that there is a positive correlation between voltage and current. It also suggests that there is a direct relationship between voltage and current.
- 2. The voltage doubles when the current is doubled.

Assessment

Resistance and Ohm's law

Page 127

1. E **2.** F **3.** D **4.** A **5.** C **6.** B **7.** D **8.** A **9.** B **10.** B **11.** B **12.** A

Chapter 9 Circuits are designed to control the transfer of electrical energy.

Section 9.1 Series and Parallel Circuits Reading Checks

Page 128

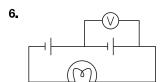
- 1. an electric circuit with one path for current to take
- 2. an electric circuit with two or more pathways for electric current to take

Comprehension

Series or parallel?

Page 130

- 1. series
- 2. parallel
- 3. parallel
- 4. series
- 5. series
- 6. series
- 8. parallel
- 9. parallel
- 10. series
- 11. parallel


Interpreting Illustrations

Is it in series or in parallel?

Page 131

- **1.** B
- 2. D
- 3. E
- **4.** A

Applying Knowledge Calculations with series circuits

Page 132

- **1.** (a) 10 Ω
 - **(b)** 3 A
 - (c) 18 V
 - (d) 12 V
- **2. (a)** 18 V
 - **(b)** 2 A
 - (c) 3 Ω

Assessment

Series and parallel circuits

Page 133

1. B 2. A 3. A 4. B 5. A 6. B 7. B 8. A 9. C 10. D

Section 9.2 The Power of Electricity

Reading Checks

Pages 134-135

- **1.** P = IV
- 2. E = Pt

Comprehension

Power calculations

Page 136

- **1.** $P = I \times V = (20)(240) = 3600 \text{ W}$
- **2.** $P = I \times V = (12)(120) = 1440 \text{ W}$
- **3.** $I = P \div V = 120 \div 15 = 8 \text{ A}$
- **4.** $I = P \div V = 210 \div 120 = 1.75 \text{ A}$
- **5.** $V = P \div I = 2.4 \div 0.8 = 3 \text{ V}$
- **6.** $P = I \times V = (2)(30) = 60 \text{ W}$

Comprehension

Energy calculations

Page 137

- **1.** $E = P \times t = (1.2)(0.5) = 0.6 \text{ kW} \cdot \text{h}$
- **2.** $E = P \times t = (0.7)(12) = 8.4 \text{ kW} \cdot \text{h}$
- **3.** $P = E \times t = 0.6 \div 6 = 0.1 \text{ kW or } 100 \text{ W}$
- **4.** $t = E \div P = 1.75 \div 1 = 1.75 \text{ h} \div 7 = 0.25 \text{ h}$ (15 min)
- **5.** $P = I \times V = (3)(30) = 90 \text{ W} = (0.09)(2) = 0.18 \text{ kW} \cdot \text{h}$

Applying Knowledge

Paying for electricity

Page 138

- **1.** (a) $E = P \times t = (15)(240)(1.5)(0.09) \div 1000 = \0.49
 - **(b)** $E = P \times t = (0.1)(5)(0.09) = (\$0.05)(6) = \$0.27$
 - (c) $E = P \times t = (2)(120)(0.25)(24)(7)(0.09) \div 1000$ = \$0.91
- **2.** $E = P \times t = (2.5)(120)(4)(7)(2)(0.09) \div 1000 = 1.51
- **3.** $\$0.54 \div \$0.09 = 6$ kWh; $t = E \div P = 6 \div 4 = 1.5$ h

Assessment

The power of electricity

Page 139

1. A 2. B 3. E 4. D 5. B 6. A 7. B 8. B