IB Math Studies SL 11 Ch13 Coordinate Geometry Geometry Review Name
 \qquad

1. The following diagram shows a straight line l.

(a) Find the equation of the line l.
(b) The line n is parallel to l and passes through the point $(0,8)$. Write down the equation of the line n.
(c) The line n crosses the horizontal axis at the point P. Find the coordinates of P.
(Total 4 marks)
2. $\quad A$ is the point $(2,3)$, and B is the point $(4,9)$.
(a) Find the gradient of the line segment [AB].
(b) Find the midpoint of the line segment $[\mathrm{AB}]$
(c) Find the length of the line segment $[\mathrm{AB}]$
(d) Find the gradient of a line perpendicular to the line segment [AB].
(e) The line $2 x+b y-12=0$ is perpendicular to the line segment $[A B]$. What is the value of b ?
3. Points $\mathbf{P}(0,-4), Q(0,16)$ are shown on the diagram.

(a) Plot the point $\mathrm{R}(11,16)$.
(b) Calculate angle QPR.
M is a point on the line $P R$. M is 9 units from P.
(c) Calculate the area of triangle PQM .
(Total 6 marks)
4. In the diagram below, PQRS is the square base of a solid right pyramid with vertex V . The sides of the square are 8 cm , and the height VG is $12 \mathrm{~cm} . \mathrm{M}$ is the midpoint of [QR].

Diagram not to scale

(a) (i) Write down the length of [GM].
(ii) Calculate the length of [VM].
(b) Find
(i) the total surface area of the pyramid;
(ii) the angle between the face VQR and the base of the pyramid.

The height of a vertical cliff is 450 m . The angle of elevation from a ship to the top of the cliff is 23°.
The ship is x metres from the bottom of the cliff.
(a) Draw a diagram to show this information.

Diagram:
(b) Calculate the value of x.
(Total 4 marks)
2. [Maximum mark: 17]

The following diagram shows a perfume bottle made up of a cylinder and a cone.

The radius of both the cylinder and the base of the cone is 3 cm .
The height of the cylinder is 4.5 cm .
The slant height of the cone is 4 cm .
(a) (i) Show that the vertical height of the cone is 2.65 cm correct to three significant figures.
(ii) Calculate the volume of the perfume bottle. [6]

The bottle contains $125 \mathrm{~cm}_{3}$ of perfume. The bottle is not full and all of the perfume is in the cylinder part.
(b) Find the height of the perfume in the bottle. [2]

Temi makes some crafts with perfume bottles, like the one above, once they are empty. Temi wants to know the surface area of one perfume bottle.
(c) Find the total surface area of the perfume bottle. [4]

Temi covers the perfume bottles with a paint that costs 3 South African rand (ZAR) per millilitre. One millilitre of this paint covers an area of $7 \mathrm{~cm}_{2}$.
(d) Calculate the cost, in ZAR, of painting the perfume bottle. Give your answer correct to two decimal places. [3]

Temi sells her perfume bottles in a craft fair for 325 ZAR each. Dominique from France buys one and wants to know how much she has spent, in euros (EUR). The exchange rate is 1 EUR $=13.03$ ZAR.
(e) Find the price, in EUR, that Dominique paid for the perfume bottle. Give your answer correct to two decimal places. [2]

4. [Maximum mark: 21]

A boat race takes place around a triangular course, ABC , with $\mathrm{AB}=700 \mathrm{~m}, \mathrm{BC}=900 \mathrm{~m}$ and angle $\mathrm{ABC}=110$. The race starts and finishes at point A .

diagram not to scale
(a) Calculate the total length of the course.

It is estimated that the fastest boat in the race can travel at an average speed of $1.5 \mathrm{~ms}^{-1}$.
(b) Calculate an estimate of the winning time of the race. Give your answer to the nearest minute.
(c) Find the size of angle ACB.

To comply with safety regulations, the area inside the triangular course must be kept clear of other boats, and the shortest distance from B to AC must be greater than 375 metres.
(d) Calculate the area that must be kept clear of boats.
(e) Determine, giving a reason, whether the course complies with the safety regulations.

The race is filmed from a helicopter, H , which is flying vertically above point A .
The angle of elevation of H from B is 15°.
(f) Calculate the vertical height, AH , of the helicopter above A .
(g) Calculate the maximum possible distance from the helicopter to a boat on the course.
12. An iron bar is heated. Its length, L, in millimetres can be modelled by a linear function, $L=m T+c$, where T is the temperature measured in degrees Celsius (${ }^{\circ} \mathrm{C}$).

At $150^{\circ} \mathrm{C}$ the length of the iron bar is 180 mm .
(a) Write down an equation that shows this information.

At $210^{\circ} \mathrm{C}$ the length of the iron bar is 181.5 mm .
(b) Write down an equation that shows this second piece of information.
(c) Hence, find the length of the iron bar at $40^{\circ} \mathrm{C}$.

Working:

Answers:
(a)
(b)
(c)

IB Math Studies SL 11 Ch13 Coordinate Geometry And

1. The following diagram shows a straight line l.

(a) Find the equation of the line l.

$$
y=2 x
$$

(b) The line n is parallel to l and passes through the point $(0,8)$. Write down the equation of the line n.

$$
y=2 x+8
$$

(c) The line n crosses the horizontal axis at the point P. Find the coordinates of P.

$$
0=2 x+8 \quad x=-4
$$

(Total 4 marks)
2. $\quad A$ is the point $(2,3)$, and B is the point $(4,9)$.
(a) Find the gradient of the line segment $[\mathrm{AB}]$.

$$
\begin{gathered}
m=\frac{9-3}{4-2}=\frac{6}{2}=3 \\
m \cdot P=\frac{2+4}{2}, \frac{3+9}{2}=(3,6)
\end{gathered}
$$

(b) Find the midpoint of the line segment [AB]
(c) Find the length of the line segment [AB]
(d) Find the gradient of a line perpendicular to the line segment $[A B] . m=\frac{1}{3} \quad b / c \quad 3 \times-\frac{1}{3}=-1$
(e) The line $2 x+b y-12=0$ is perpendicular to the line segment $[A B]$. What is the value of b ?
c) $d=\sqrt{(2-4)^{2}+(3-9)^{6}}$

$$
\begin{aligned}
& =\sqrt{4+36} \\
& =\sqrt{40} \\
& =6.32
\end{aligned}
$$

$$
M=-\frac{A}{b} \quad-\frac{1}{3}=\frac{-2}{1}
$$

3. Points $P(0,-4), Q(0,16)$ are shown on the diagram.

(a) Plot the point $\mathrm{R}(11,16)$.
(b) Calculate angle QPR. $\operatorname{Tan} Q P R=\frac{11}{20} \quad \angle Q P R=2 \% .8$
M is a point on the line PR. M is 9 units from P.
(c) Calculate the area of triangle PQM .

$$
\begin{aligned}
A & =\frac{1}{2}(20)(9) \sin 28.8 \\
& =43.4 \text { units }^{2}
\end{aligned}
$$

(Total 6 marks)
4. In the diagram below, PQRS is the square base of a solid right pyramid with vertex V . The sides of the square are 8 cm , and the height VG is $12 \mathrm{~cm} . \mathrm{M}$ is the midpoint of [QR].

Diagram not to scale

(a) (i) Write down the length of [GM].
(ii) Calculate the length of [VM].

$$
\begin{aligned}
V M & =\sqrt{4^{2}+12^{2}}=12.6 \\
& =12.649
\end{aligned}
$$

(b) Find
(i) the total surface area of the pyramid;

$$
\begin{aligned}
3 . A & =4\left(\frac{1}{2} 8 \cdot 12.6\right)+6 \\
& =265 \cdot 6
\end{aligned}
$$

$$
\left.\operatorname{Tan} \sqrt[V M G]{V M G}=\frac{V G}{G M}=\frac{12}{4}=\sum^{2} \operatorname{Tan}^{-1} / 3\right)=71.1 \text { (Total } 6 \text { marks) }
$$

The height of a vertical cliff is 450 m . The angle of elevation from a ship to the top of the cliff is 23°.
The ship is x metres from the bottom of the cliff.
(a) Draw a diagram to show this information.

Diagram:

$$
x=1060 \mathrm{~m}
$$

(b) Calculate the value of x.

$$
\tan 23^{\circ}=\frac{450}{x}
$$

(Total 4 marks)
2. [Maximum mark: 17]

The following diagram shows a perfume bottle made up of a cylinder and a cone.

The radius of both the cylinder and the base of the cone is 3 cm . The height of the cylinder is 4.5 cm .
The slant height of the cone is 4 cm .
(a) (i) Show that the vertical height of the cone is 2.65 cm correct to three significant figures.

$$
4^{2}-3^{2}=h \quad h=2.65
$$

(ii) Calculate the volume of the perfume bottle. [6]

$$
\begin{aligned}
V & =\pi r^{2} h+\frac{1}{3} \pi r^{2} s \\
& =\pi 3^{2} \cdot 4,5+\frac{1}{3} \pi \cdot 3^{2} \cdot 4=164.933=16 \cdot 5 \mathrm{~mL}
\end{aligned}
$$

The bottle contains $125 \mathrm{~cm}_{3}$ of perfume. The bottle is not full and all of the perfume is in the cylinder part.
(b) Find the height of the perfume in the bottle. [2]

$$
\begin{aligned}
\pi 3^{2} \cdot h=125 \quad & h
\end{aligned}=\frac{125}{13^{2}}
$$

Temi makes some crafts with perfume bottles, like the one above, once they are empty. Temi wants to know the surface area of one perfume bottle.
(c) Find the total surface area of the perfume bottle. [4]

$$
\text { S. } \begin{aligned}
A & =\pi r l+2 \pi r h \\
& =\pi 3.4+2 \pi(3) \times(4.5)=123 \mathrm{~cm}^{2}
\end{aligned}
$$

Temi covers the perfume bottles with a paint that costs 3 South African rand (ZAR) per millilitre. One millilitre of this paint covers an area of 7 cm 2 .
(d) Calculate the cost, in ZAR, of painting the perfume bottle. Give your answer correct to two decimal places. [3]

$$
123 . \mathrm{cm}^{2} \times \frac{32 \mathrm{ar}}{7 \mathrm{~cm}^{2}}=52.712 a r
$$

Temi sells her perfume bottles in a craft fair for 325 ZAR each. Dominique from France buys one and wants to know how much she has spent, in euros (EUR). The exchange rate is $1 \mathrm{EUR}=13.03 \mathrm{ZAR}$.
(e) Find the price, in EUR, that Dominique paid for the perfume bottle. Give your answer correct to two decimal places. [2]

$$
3252 A R \times \frac{1 \text { EUR }}{13.832 A R}=24.94 \text { EuR }
$$

4. [Maximum mark: 21]

A boat race takes place around a triangular course, ABC , with $\mathrm{AB}=700 \mathrm{~m}, \mathrm{BC}=900 \mathrm{~m}$ and angle $\mathrm{ABC}=110^{*}$. The race starts and finishes at point A .

diagram not to scale
(a) Calculate the total length of the course.

$$
\begin{equation*}
700+900+1315,65 m=2915.65 \mathrm{~m}=2920 \mathrm{~m} \tag{4}
\end{equation*}
$$ It is estimated that the fastest boat in the race can travel at an average speed of $1.5 \mathrm{~ms}^{-1}$.

(b) Calculate an estimate of the winning time of the race. Give your answer to the nearest minute.

$$
\begin{aligned}
& 2920 \mathrm{~m} \times \frac{\mathrm{s}}{1.5 \mathrm{~m}}=\frac{19475}{605}=32 \mathrm{~min} \\
& \text { B. } \sin C-\sin 110
\end{aligned}
$$

(c) Find the size of angle $\mathrm{ACB} \cdot \frac{\sin C}{700 \mathrm{~m}}=\frac{\sin 110}{1316 \mathrm{~m}}=29,989=30.0^{\circ}$ other boats, and the shortest distance from B to AC must be greater than 375 metres.
(d) Calculate the area that must be kept clear of boats. $\frac{1}{2} \times 700 \times 900 \times \sin 110^{\circ}$

$$
\begin{equation*}
=296000 m^{2} \tag{3}
\end{equation*}
$$

(e) Determine, giving a reason, whether the course complies with the safety regulations.

$$
\sin 30^{\circ}=\frac{x}{9} \quad d=450 \mathrm{~m}
$$

The race is filmed from a helicopter, H , which is flying vertically above point A . The angle of elevation of H from B is 15°.
(f) Calculate the vertical height, AH , of the helicopter above A .
(g) Calculate the maximum possible distance from the helicopter to a boat on the course.

$$
\text { f) } \begin{aligned}
\tan 15^{\circ}=\frac{A H}{700} & \text { g) } H C^{2}=187.564^{\circ}+1315.65^{\circ} \\
A H & =188 \mathrm{~m}
\end{aligned} \quad \begin{aligned}
& 330 \mathrm{~m}
\end{aligned}
$$

12. An iron bar is heated. Its length, L, in millimetres can be modelled by a linear function, $L=m T+c$, where T is the temperature measured in degrees Celsius (${ }^{\circ} \mathrm{C}$).

At $150^{\circ} \mathrm{C}$ the length of the iron bar is 180 mm .
(a) Write down an equation that shows this information.

At $210^{\circ} \mathrm{C}$ the length of the iron bar is 181.5 mm .
(b) Write down an equation that shows this second piece of information.
(c) Hence, find the length of the iron bar at $40^{\circ} \mathrm{C}$.

Working:
a) $180=150 \mathrm{~m}+\mathrm{c}$
b) $181,5={ }^{1}=210 m+c$

$$
m=\frac{181,5-180}{210-150}
$$

$$
\begin{aligned}
180 & =150(.025)+c \\
c & =176.25
\end{aligned}
$$

$$
=1.5 \quad c)
$$

Answers:
\qquad
\qquad
\qquad

